Module 1 - Integer Exponents and Scientific Notation

Cube - A cube is a right rectangular prism all of whose edges are of equal length.
Exponent - The number of times a number is to be used as a factor in a multiplication expression.

Exponential notation -Let m be a non-zero whole number. For any number a, we define $a^{\wedge} m$ to be the product of m factors of a, i.e., $a^{\wedge} m=(a \cdot a \cdot a \cdot a . . . \cdot a) T(m$ times $)$. The number a is called the base, and m is called the exponent, or power of a.

Integers - The whole numbers and their opposites. The set of integers is represented mathematically by the set: $\{\ldots-3,-2,-1,0,1,2,3,4,5 \ldots\}$.

Scientific notation - The scientific notation for a finite decimal is the representation of that decimal as the product of a decimal s and a power of 10, where s satisfies the property that it is at least 1 , but smaller than 10 , or in symbolic notation, $1 \leq \mathrm{s}<10$. For example, the scientific notation for 192.7 is 1.927×10^{2}.

Whole number - Whole numbers are positive numbers, including zero, without any decimal or fractional parts. The set of whole numbers is represented mathematically by the set: $\{0,1,2,3,4,5 \ldots\}$.

